Asymmetry in voltage-dependent movements of isolated outer hair cells from the organ of Corti.
نویسنده
چکیده
The electrically induced movements of outer hair cells (OHC) were studied using the whole-cell voltage-clamp technique and video analysis. Cell shortening occurs during depolarization and elongation occurs during hyperpolarization from holding potentials near -70 mV. However, a marked asymmetry in response magnitude exists such that depolarization produces larger cell length changes than do comparable levels of hyperpolarization. The response is such that at normal resting potentials in vivo, displacements are about 2 nm/mV, but increase to about 15 nm/mV as the cell is depolarized. This mechanical rectification in the depolarizing direction manifests itself during symmetrical sinusoidal voltage stimulation as a "DC" reduction in cell length superimposed upon "AC" length changes. The observed OHC mechanical rectification may be involved in the reported production of "DC" basilar membrane displacements during suprathreshold acoustic stimulation (LePage, 1987). Estimates of the magnitude of OHC movements at acoustic threshold levels induced by receptor potentials in the high-frequency region of the cochlea indicate a disparity between basilar membrane and OHC movements on the order of 21 dB. Thus, it appears questionable whether OHC mechanical movements solely underlie the "active process" thought to be responsible for the high degree of neural tuning at sound pressures near 0 dB.
منابع مشابه
Reversible inhibition of voltage-dependent outer hair cell motility and capacitance.
Outer hair cells (OHC) from the organ of Corti are capable of fast voltage-induced length changes (Santos-Sacchi and Dilger, 1988), suggesting that an associated voltage sensor should reside in the OHC plasma membrane. Voltage-dependent mechanical responses and nonlinear charge movement of isolated OHCs from the guinea pig were analyzed using the whole-cell voltage-clamp technique. Ionic curren...
متن کاملFurosemide alters nonlinear capacitance in isolated outer hair cells.
The outer hair cell (OHC) from the organ of Corti plays a crucial role in hearing through its unique voltage-dependent mechanical responses. Furosemide, one of the loop diuretics, disrupts normal cochlear function. Here we report on direct effects of furosemide on OHC motility-related, voltage-dependent capacitance using the whole-cell patch-clamp technique. Extracellularly applied furosemide r...
متن کاملDissociation between the calcium-induced and voltage-driven motility in cochlear outer hair cells from the waltzing guinea pig.
The waltzing guinea pig, possessing an hereditary progressive deafness, shows pathology to the actin-bearing structures within the hair cells of the organ of Corti. In particular, the affected structures include the stereocilia, the cuticular plate and, as shown in the present study, swollen and disorganized subsurface cisternae. To test whether this pathology affected outer hair cell motility,...
متن کاملHigh frequency radial movements of the reticular lamina induced by outer hair cell motility
Recently, it was shown in cochlear explants from the guinea pig cochlea that electrokinetic motile responses of outer hair cells can induce radial and transverse motion of the reticular lamina. Here we demonstrate, that the radial component of these motions can be measured up to high frequencies (15 kHz). Cochlear explants were taken from guinea pig inner ears and exposed to a sinusoidal electr...
متن کاملActive radial and transverse motile responses of outer hair cells in the organ of corti
In isolated outer hair cells (OHCs) electrically induced movements of high frequencies have been described. The experiments, however, gave no information whether fast OHC motility exists in situ. In the present report, we developed a technique to prepare viable half turn explants from the guinea-pig cochlea which could be kept as organ culture. Several video imaging methods and pixel-by-pixel, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 8 شماره
صفحات -
تاریخ انتشار 1989